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Questions 
(The R code can be found at the end of the homework.) 

1. Using the full data set for the 48 different reefs evaluate the mean-variance relationship for 
the variable PREV_1. Parallel what we did in class except use more categories than we were 
able to use. Deciles might be a good place to start. Produce a plot that compares a Poisson, 
NB1, and NB2 model for the mean-variance relationship.  
 

10 categories 8 categories 

 
First I tried using deciles to evaluate the mean-variance relationship (left), which is necessary to 
determine which probability model best describes how disease occurrence (PREV_1) correlates 
with water temperature (WSSTA).  The NB2 model visually appears to be the best model 
describing the mean-variance relationship.  The NB1 model looks worse, and the Poisson is by 
far the worst (since the variance is constrained to equal the mean, but the variance increases 
sharply with only small increases in the mean).  
 
I also tried doing just 8 categories instead of 10 as suggested in Hint #3 to see how robust the 
results would be with a different number of categories (right).  The results look virtually identical 
in terms of the shapes of the models fitted.  However, there is just one data point above both the 
NB1 and NB2 curves compared to two when there were 10 categories.  Qualitatively, it seems 
these curves are less justified by the data because there are so few categories.  If we had more 
data, we could have more categories than just 8 or 10, and there would be more points on the 
above plots to justify using NB2 over NB1 as our probability model. 



2. Repeat the plot we did in class for the negative binomial distribution but add a Poisson 
distribution with λ = 1 and another with λ = 5. Compare these to the corresponding negative 
binomial distributions. Remembering that the Poisson distribution corresponds to a negative 
binomial with an infinite value of θ, what seems to be the primary effect of decreasing the value 
of θ for each value of λ? Submit your answer to this question along with your plot. Modify the 
legend accordingly.  

 

Since the Poisson distribution corresponds to a negative binomial with an infinite value of θ, we 
expect that the Poisson should look less like the negative binomial as θ decreases (thus, it will 
look more like the NB2 when θ = 10 than when θ = 0.1).  This can be seen by comparing the 2 
Poisson distributions (green) with the NB2 distributions that have θ = 10 (red).  The Poisson with 
λ = 5 has some resemblance to the NB2 with θ = 10 and µ = 5, but the Poisson with λ = 1 has a 
strong resemblance to the NB2 with θ = 10 and µ = 1.  If θ were even larger, we likely would be 
unable to tell the Poisson and NB2 distributions apart. 

Neither of the Poisson distributions resemble the NB2 distributions that have θ = 0.1 (black), 
because θ is so small.  For those two, we can observe that shape of the distribution depends little 
on the value of the mean (µ), though as k increases, there is a slightly sharper decline for µ = 1 
vs. for µ = 5.   



3. Produce a single plot that compares four different gamma distributions with different shape 
and scale parameters. The relevant function in R is dgamma. Examine the help window for 
dgamma and notice that the shape parameter is identical to the one used in class but that the 
scale parameter used in dgamma is the reciprocal of ours. To start with try α = 1, 2, and 5 with 
β = 1. For your fourth curve select another value of β that seems to generate an interesting 
distribution. What effect does the scale parameter seem to have on the distribution?  

 

The scale parameter (β) controls the spread of the gamma distribution along the k axis, as well as 
the probabilities that x will equal smaller or larger values of k.  As β increases, the gamma 
distribution is stretched farther along the k axis.  This means the probabilities of x equaling 
smaller values of k decrease, and the probabilities of x equaling larger values of k increase.  As β 
approaches infinity, the distribution approaches a straight line stretching to k = infinity, with 
infinitesimal probabilities that x equals any value of k.  Decreasing β gave the most interesting 
shapes of distributions, I thought.  When β decreases, the probabilities that x equals smaller 
values of k increases, and gives a peak (as shown from 0 < k < 3).   

About the shape parameter (α)…as it increases, the gamma distribution goes from resembling an 
exponential curve for α < 1 to a curve having a maximum, with tails that get broader as α gets 
larger.   



R Code 

Problem 1 
#   creating deciles with roughly equal counts in each category 
> quantile(corals$WSSTA,seq(0,1,0.1)) 
  0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 100%  
   0    0    1    1    2    3    5    7   10   18   30  
#The 0% and 10% deciles are repeated, as well as the 20% and 30% deciles. 

> quantile(corals$WSSTA,c(.1,.3,.4,.5,.6,.7,.8,.9,1)) 
 10%  30%  40%  50%  60%  70%  80%  90% 100%  
   0    1    2    3    5    7   10   18   30 

> cut(corals$WSSTA,quantile(corals$WSSTA,c(.1,.3,.4,.5,.6,.7,.8,.9,1)), 
include.lowest=TRUE) 
#originally gave lots of intervals and NAs, but include.lowest=TRUE removed 
the NAs. 
Levels: [0,1] (1,2] (2,3] (3,5] (5,7] (7,10] (10,18] (18,30] 

> table(cut(corals$WSSTA,quantile(corals$WSSTA,c(.1,.3,.4,.5,.6,.7,.8,.9,1)) 
,include.lowest=TRUE)) 
  [0,1]   (1,2]   (2,3]   (3,5]   (5,7]  (7,10] (10,18] (18,30]  
     89      31      25      34      25      23      30      23 

> table(cut(corals$WSSTA,quantile(corals$WSSTA,c(.1,.3,.4,.5,.6,.7,.8,.9,1)), 
include.lowest=TRUE,right=FALSE)) 
  [0,1)   [1,2)   [2,3)   [3,5)   [5,7)  [7,10) [10,18) [18,30]  
     48      41      31      42      32      25      28      33 
#doing right=FALSE helped equilibrate the categories more, especially the 
first category. 

#   getting means and vars for each category 
> WSSTA.decs<-
cut(corals$WSSTA,quantile(corals$WSSTA,c(.1,.3,.4,.5,.6,.7,.8,.9,1)),include.
lowest=TRUE,right=FALSE) 
> tapply(corals$PREV_1, WSSTA.decs,mean)->means 
> tapply(corals$PREV_1, WSSTA.decs,var)->vars 

#   plotting vars vs. means 
> plot(means, vars, axes=FALSE, xlab=expression(paste("Mean ",mu)), 
ylab=expression(paste("Variance ",sigma^2)),xlim=c(0,40), cex=1.5) 
> axis(1,cex.axis=.9) 
> axis(2,cex.axis=.9) 
> box() 

#   plotting the NB2 model  
> quad.coef<-coef(lm(vars~offset(means)+I(means^2)-1)) 
> quad.func<-function(x) x+quad.coef*x^2 
> lines(seq(0,150,5), quad.func(seq(0,150,5)), col=1, lty=1, lwd=2) 

#   plotting the NB1 model 
> abline(0, coef(lm(vars~means-1)), col=2, lty=2, lwd=2) 

#   adding the Poisson  
> abline(0,1,col=3,lty=1,lwd=2) 



#   adding the legend and title 
> legend(0,10000, c('Poisson', 'quasi-Poisson (NB1)', 'negative binomial 
(NB2)'), col=c(3,2,1), lwd=c(2,1,2), lty=c(1,2,1), cex=c(.8,.8,.8), bty='n') 
> mtext('Mean-Variance Relationship for Disease Prevalence', side=3, line=.5, 
font=2, cex=.9) 

 
#   trying 8 categories instead of 10 

> quantile(corals$WSSTA,seq(0,1,0.1)) 
  0%  10%  20%  30%  40%  50%  60%  70%  80%  90% 100%  
   0    0    1    1    2    3    5    7   10   18   30  
#The 0% and 10% deciles are repeated, as well as the 20% and 30% deciles. 

> quantile(corals$WSSTA,seq(0,1,0.125)) 
   0% 12.5%   25% 37.5%   50% 62.5%   75% 87.5%  100%  
    0     0     1     2     3     5     8    17    30 
#Only the 0% and 12.5% octiles are repeated, so I will use the c function to 
merge those two. 

> cut(corals$WSSTA,quantile(corals$WSSTA,c(.125,.25,.375,.5,.625,.75,.875,1)) 
,include.lowest=TRUE) 
#originally gave lots of intervals and NAs, but include.lowest=TRUE removed 
the NAs. 
Levels: (0,1] (1,2] (2,3] (3,5] (5,8] (8,17] (17,30] 

> table(cut(corals$WSSTA,quantile(corals$WSSTA,c(.125,.25,.375,.5,.625,.75, 
.875,1)),include.lowest=TRUE)) 
  [0,1]   (1,2]   (2,3]   (3,5]   (5,8]  (8,17] (17,30]  
     89      31      25      34      32      36      33 
#the counts in each category are roughly the same except for the first 
category. 

> table(cut(corals$WSSTA,quantile(corals$WSSTA,c(.125,.25,.375,.5,.625,.75, 
.875,1)),include.lowest=TRUE,right=FALSE)) 
  [0,1)   [1,2)   [2,3)   [3,5)   [5,8)  [8,17) [17,30]  
     48      41      31      42      42      38      38 
#doing right=FALSE helped equilibrate the categories more, especially the 
first category. 

#   getting means and vars for each category 
> WSSTA.octs<-
cut(corals$WSSTA,quantile(corals$WSSTA,c(.125,.25,.375,.5,.625,.75,.875,1)), 
include.lowest=TRUE,right=FALSE) 
> tapply(corals$PREV_1, WSSTA.octs,mean)->means 
> tapply(corals$PREV_1, WSSTA.octs,var)->vars 

#   plotting vars vs. means 
> plot(means, vars, axes=FALSE, xlab=expression(paste("Mean ",mu)), 
ylab=expression(paste("Variance ",sigma^2)),xlim=c(0,40), ylim=c(0,11000), 
cex=1.5) 
> axis(1,cex.axis=.9) 
> axis(2,cex.axis=.9) 
> box() 

#   plotting the NB2 model  
> quad.coef<-coef(lm(vars~offset(means)+I(means^2)-1)) 
> quad.func<-function(x) x+quad.coef*x^2 
> lines(seq(0,150,5), quad.func(seq(0,150,5)), col=1, lty=1, lwd=2) 



#   plotting the NB1 model 
> abline(0, coef(lm(vars~means-1)), col=2, lty=2, lwd=2) 

#   adding the Poisson  
> abline(0,1,col=3,lty=1,lwd=2) 

Problem 2 
> #   set up plot area 
> plot(0:10, dpois(0:10,1), axes=FALSE, type='n', xlab='k', 
ylab='P(X=k)',cex=1.5) 
> axis(1,cex.axis=.9) 
> axis(2,cex.axis=.9) 
> box() 

> #   plot both Poisson distributions 
> points(0:10,dpois(0:10,1),pch=16,col=3) 
> lines(0:10,dpois(0:10,1),col=3) 
> points(0:10,dpois(0:10,5),pch=22,col=3) 
> lines(0:10,dpois(0:10,5),col=3) 

> #   plot all 4 of the negative binomial distributions we did in class 
> points(0:10,dnbinom(0:10,size=.1,mu=1),pch=16) 
> lines(0:10,dnbinom(0:10,size=.1,mu=1)) 
> points(0:10,dnbinom(0:10,size=10,mu=1),pch=16,col=2) 
> lines(0:10,dnbinom(0:10,size=10,mu=1),col=2) 
> points(0:10,dnbinom(0:10,size=.1,mu=5),pch=21) 
> lines(0:10,dnbinom(0:10,size=.1,mu=5),lty=2) 
> points(0:10,dnbinom(0:10,size=10,mu=5),pch=21,col=2) 
> lines(0:10,dnbinom(0:10,size=10,mu=5),col=2,lty=2) 

> #   add legend for all 4 distributions 
> legend(5,.35, c( 
+ expression(paste('Poisson, ', lambda==1)), 
+ expression(paste('Poisson, ', lambda==5)), 
+ expression(paste('NB2, ', theta==.1,', ', mu==1)), 
+ expression(paste('NB2, ', theta==10,', ', mu==1)), 
+ expression(paste('NB2, ', theta==.1,', ', mu==5)), 
+ expression(paste('NB2, ', theta==10,', ', mu==5))), col=c(3,3,1,2,1,2), 
pch=c(16,22,16,16,21,21), lty=c(1,1,1,1,2,2), cex=rep(.9,6), bty='n') 

> #   add title 
> mtext(expression(paste('Comparing Poisson and negative binomial 
distributions for varying ',lambda,' and ',theta)), side=3, line=.5) 

Problem 3 
> #   set up plot area 
> plot(0:10, dgamma(0:10,1), axes=FALSE, type='n', xlab='k', 
ylab='P(X=k)',cex=1.5) 
> axis(1,cex.axis=.9) 
> axis(2,cex.axis=.9) 
> box() 

> #   plot all 4 gamma distributions 
> lines(0:10,dgamma(0:10,shape=1,scale=1)) 



> lines(0:10,dgamma(0:10,shape=2,scale=1),col=2) 
> lines(0:10,dgamma(0:10,shape=5,scale=1),col=3) 
> lines(0:10,dgamma(0:10,shape=5,scale=.25),col=3,lty=2) 

> #   add legend for all 4 distributions 
> legend(4,1, c( 
+ expression(paste(shape==1,', ', scale==1)), 
+ expression(paste(shape==2,', ', scale==1)), 
+ expression(paste(shape==5,', ', scale==1)), 
+ expression(paste(shape==5,', ', scale==.25))), 
+ col=c(1,2,3,3), lty=c(1,1,1,2), cex=rep(.9,4), bty='n') 

> #   add title 
> mtext(expression(paste('Comparing Gamma distributions for varying shape 
',alpha,' and scale ',beta)), side=3, line=.5) 

 


