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Ecol 145 Assignment 7 
Dahl Winters 
3/24/06 

Question 1  

Fit a single regression model (or at most two models) and test these data for a treatment effect. 
Use whatever methodology you think appropriate.  

Inputting the data: 
 
num.borers1<-c(0:26) 
trt1<-c(19,12,18,18,11,12,7,8,4,4,1,0,1,1,0,1,0,1,0,1,0,0,0,0,0,0,1) 
counts1<-rep(num.borers1,trt1) 
 
num.borers2<-c(0:12) 
trt2<-c(24,16,16,18,15,9,6,5,3,4,3,0,1)  
counts2<-rep(num.borers2,trt2) 
 
num.borers3<-c(0:8) 
trt3<-c(43,35,17,11,5,4,1,2,2) 
counts3<-rep(num.borers3,trt3) 
 
num.borers4<-c(0:11) 
trt4<-c(47,23,27,9,7,3,1,1,0,0,1,1) 
counts4<-rep(num.borers4,trt4) 
 
counts<-c(counts1,counts2,counts3,counts4) 
length(counts) 
[1] 480 
 
trts<-rep(1:4,rep(length(counts1),4)) 
table(trts) #to check if I used the rep function correctly 
trts 
  1   2   3   4  
120 120 120 120 
 
Converting the numeric values of the treatments to factors 
 
trt.f<-factor(trts) 
class(trt.f) 
[1] "factor" 
contrasts(trt.f) 
  2 3 4 
1 0 0 0 
2 1 0 0 
3 0 1 0 
4 0 0 1 
 
Model 1: Fitting a model without treatments as predictors 
 
library(MASS) 
model1<-glm.nb(counts~1) 
summary(model1) 
Call: 
glm.nb(formula = counts ~ 1, init.theta = 1.08235181293464, link = log) 
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Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.6185  -1.6185  -0.2003   0.4337   3.4552   
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  0.93528    0.05237   17.86   <2e-16 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
(Dispersion parameter for Negative Binomial(1.0824) family taken to be 1) 
    Null deviance: 533.43  on 479  degrees of freedom 
Residual deviance: 533.43  on 479  degrees of freedom 
AIC: 2029.0 
Number of Fisher Scoring iterations: 1 
              Theta:  1.082  
          Std. Err.:  0.112  
 2 x log-likelihood:  -2024.952 
 
 
Model 2: Fitting a model with treatments as predictors 
 
model2<-glm.nb(counts~trt.f) 
summary(model2) 
Call: 
glm.nb(formula = counts ~ trt.f, init.theta = 1.47144974025270, link = log) 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.9705  -1.4324  -0.3071   0.2768   2.9291   
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  1.39459    0.08792  15.863  < 2e-16 *** 
trt.f2      -0.24191    0.12659  -1.911    0.056 .   
trt.f3      -1.00030    0.13788  -7.255 4.02e-13 *** 
trt.f4      -0.98359    0.13754  -7.151 8.60e-13 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
(Dispersion parameter for Negative Binomial(1.4714) family taken to be 1) 
    Null deviance: 623.56  on 479  degrees of freedom 
Residual deviance: 538.74  on 476  degrees of freedom  
AIC: 1958.5 
Number of Fisher Scoring iterations: 1 
Correlation of Coefficients: 
       (Intercept) trt.f2 trt.f3 
trt.f2 -0.69                     
trt.f3 -0.64        0.44         
trt.f4 -0.64        0.44   0.41  
              Theta:  1.471  
          Std. Err.:  0.174  
2 x log-likelihood:  -1948.453 
 
Is there a treatment effect? 
 
The AIC is considerably lower for model 2 (with predictors) than for the model without predictors, model 1 
(1958.5 compared to 2029.0).  This suggests that model 2 is the better one.  Also, when doing an ANOVA 
comparing model 1 with model 2 (below), the p-value was very small, which also suggests that including 
predictors gives a model with a greater goodness of fit to the data. 
 
anova(model1,model2) 
Likelihood ratio tests of Negative Binomial Models 
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Response: counts 
                 Model    theta Resid. df    2 x log-lik.   Test    df LR stat.      Pr(Chi) 
1                    1 1.082352       479       -2024.952                                    
2 trt.f + I(trt.dummy) 1.471450       476       -1948.453 1 vs 2     3 76.49927 2.220446e-16 
 

Question 2   

I would now like you to fit a single regression model that not only tests for an overall treatment 
effect, but also tests the following three hypotheses simultaneously.  What conclusions do you 
draw for each of these tests? 

Coming up with a new coding scheme to test the three hypotheses simultaneously 
 
trt.fb<-factor(trts) 
contrasts(trt.fb)<-cbind(c(0,1,1,-2),c(0,1,-1,0),c(3,-1,-1,-1))  
contrasts(trt.fb)  
  [,1] [,2] [,3] 
1    0    0    3 
2    1    1   -1 
3    1   -1   -1 
4   -2    0   -1 
 
Trt1: log µ1 = β0+3β3 
Trt2: log µ2 = β0+β1+β2-β3 
Trt3: log µ3 = β0+β1-β2-β3 
Trt4: log µ4 = β0-2β1-β3 
 
Fitting another negative binomial glm using the new coding scheme 
 
model3<-glm.nb(counts~trt.fb) 
summary(model3) 
Call: 
glm.nb(formula = counts ~ trt.fb, init.theta = 1.47144974025270,  
    link = log) 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.9705  -1.4324  -0.3071   0.2768   2.9291   
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  0.83814    0.04905  17.088  < 2e-16 *** 
trt.fb1      0.12083    0.04227   2.858  0.00426 **  
trt.fb2      0.37919    0.06996   5.420 5.95e-08 *** 
trt.fb3      0.18548    0.02640   7.027 2.11e-12 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
(Dispersion parameter for Negative Binomial(1.4714) family taken to be 1) 
    Null deviance: 623.56  on 479  degrees of freedom 
Residual deviance: 538.74  on 476  degrees of freedom 
AIC: 1958.5 
Number of Fisher Scoring iterations: 1 
Correlation of Coefficients: 
        (Intercept) trt.fb1 trt.fb2 
trt.fb1 -0.06                       
trt.fb2 -0.11       -0.08           
trt.fb3 -0.12        0.03    0.07   
              Theta:  1.471  
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          Std. Err.:  0.174  
2 x log-likelihood:  -1948.453 
 
 
Conclusions drawn for each of the 3 tests 

1. Treatment 4 involves a double application of fungal spores. Test whether a double 
application yields a different result than a single application (ignoring the timing of the single 
application). This should be a contrast of treatment 4 with treatments 2 and 3 combined.  

This is a test of whether µ4 is different from the average of µ2 and µ3. When the appropriate 
substitutions are made, this reduces to a test of whether β1 = 0.  From the summary output, we see 
that the p-value for this test is 0.00426, which is under 0.05.  Thus we can say that this test doesn’t 
give us a reason to reject the hypothesis that a double application of spores yields a different result 
from a single application. 

2. Treatments 2 and 3 are both single applications of fungal spores, but their timing is different. 
Test whether the timing of the application makes a difference. This should be a contrast of 
treatment 2 with treatment 3. 

This is a test of whether µ2 is different from µ3. When the appropriate substitutions are made, this 
reduces to a test of whether β2 = 0.  The p-value for this test was 5.95e-08, which is very small.  
Again, we can say there isn’t a cause for rejecting the hypothesis that the timing of the application 
makes a difference. 

3. Test whether any application of fungal spores at all yields a result different from no 
application. This should be a contrast of treatment 1 with treatments 2, 3, and 4 combined. 

This is a test of whether µ1 is different from the average of µ2, µ3, and µ4.  When the appropriate 
substitutions are made, this reduces to a test of whether β3 = 0.  The p-value for this test was 2.11e-
12, the smallest yet (though I know I’m not supposed to read much into the magnitude of these 
numbers).  Because the p-value is much smaller than 0.05, this test does not provide a reason to 
reject the hypothesis that applying spores yields a different result than not applying any. 

 

Question 3   

Are the contrasts specified in Question 2 orthogonal contrasts? Why or why not? 

contrasts(trt.fb)  
  [,1] [,2] [,3] 
1    0    0    3 
2    1    1   -1 
3    1   -1   -1 
4   -2    0   -1 
 
They are orthogonal contrasts because the sum of all columns = 0, the sum of all pairwise multiplications 
(0+0+1-1-1+1+0+0) = 0, and the number of observations in each treatment group are the same 
(treatments 1-4 each have 120 observations), which are the three required conditions for contrasts to be 
orthogonal. 
 

Question 4   
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Create an error bar plot in which you display 95% Wald confidence intervals for the mean much 
like you did in Question 3 of Assignment 4. This time though use only the results from the 
regression model you fit in Question 1 of this assignment.  

Getting the formulas for the treatment means 
 
The form of the model is log µ = β0+β1x1+β2x2+β3x3. 
 
contrasts(trt.f) 
  2 3 4 
1 0 0 0 
2 1 0 0 
3 0 1 0 
4 0 0 1 

 
Trt1: log µ1 = β0 
Trt2: log µ2 = β0+β1 
Trt3: log µ3 = β0+β2 
Trt4: log µ4 = β0+β3 

 
coef(model2) 
(Intercept)      trt.f2      trt.f3      trt.f4  
  1.3945932  -0.2419137  -1.0003014  -0.9835879 
 
#the following are actually log means 
mean1<-coef(model2)[1] 
mean2<-coef(model2)[1]+coef(model2)[2] 
mean3<-coef(model2)[1]+coef(model2)[3] 
mean4<-coef(model2)[1]+coef(model2)[4] 
 
To get the standard errors of the individual means 
 
out<-summary(model2) 
out$cov.unscaled #gives the covariance matrix 
             (Intercept)       trt.f2       trt.f3       trt.f4 
(Intercept)  0.007729465 -0.007729465 -0.007729465 -0.007729465 
trt.f2      -0.007729465  0.016024393  0.007729465  0.007729465 
trt.f3      -0.007729465  0.007729465  0.019010791  0.007729465 
trt.f4      -0.007729465  0.007729465  0.007729465  0.018917675 
 
err1<-sqrt( c(1,0,0,0) %*% out$cov.unscaled %*% c(1,0,0,0) ) 
err1 
           [,1] 
[1,] 0.08791737 
err2<-sqrt( c(0,1,0,0) %*% out$cov.unscaled %*% c(0,1,0,0) ) 
err2 
          [,1] 
[1,] 0.1265875 
err3<-sqrt( c(0,0,1,0) %*% out$cov.unscaled %*% c(0,0,1,0) ) 
err3 
          [,1] 
[1,] 0.1378796 
err4<-sqrt( c(0,0,0,1) %*% out$cov.unscaled %*% c(0,0,0,1) ) 
err4 
          [,1] 
[1,] 0.1375415 
 
Back-transforming the log means as a check to see if we will get the same means as in Assignment 4 
 
mean.count<-c(exp(mean1),exp(mean2),exp(mean3),exp(mean4))  
mean.count 
(Intercept) (Intercept) (Intercept) (Intercept)  
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   4.033333    3.166667    1.483333    1.508333 
#yes, these are the same means, which is good. 
 
Set up plot area 
 
plot(1:4, mean.count, axes=FALSE, xlab="Treatment", ylab="Mean Count", 
xlim=c(0.5,4.5), ylim=c(1,5), cex=1.5) 
axis(1,cex.axis=.9) 
axis(2,cex.axis=.9) 
box() 
mtext(‘95% Wald confidence interval for negative binomial means’, side=3, 
line=.5) 
 
Getting lower and upper bounds for all 4 treatments – calculated on the scale of the log link 
 
Lower bounds Upper bounds 
 
mean1-qnorm(.975)*err1 
         [,1] 
[1,] 1.222278 

mean1+qnorm(.975)*err1 
         [,1] 
[1,] 1.566908

mean2-qnorm(.975)*err2 
          [,1] 
[1,] 0.9045726 

mean2+qnorm(.975)*err2 
         [,1] 
[1,] 1.400786 

mean3-qnorm(.975)*err3 
          [,1] 
[1,] 0.1240527 

mean3+qnorm(.975)*err3 
          [,1] 
[1,] 0.6645309 

mean4-qnorm(.975)*err4 
          [,1] 
[1,] 0.1414288 

mean4+qnorm(.975)*err4 
          [,1] 
[1,] 0.6805818 

 
Drawing the arrows 
 
#draws arrows from y0=meanval to y1=meanval+/-stderrval, x0=x1=1,2,3,or 4. 
 
arrow.draw<-function(xpos,meanval,stderrval) arrows(xpos, 
exp(meanval+stderrval), xpos, exp(meanval-stderrval), length=0.15, angle=90, 
code=3) 
 
arrow.draw(1,mean1,qnorm(.975)*err1) 
arrow.draw(2,mean2,qnorm(.975)*err2) 
arrow.draw(3,mean3,qnorm(.975)*err3) 
arrow.draw(4,mean4,qnorm(.975)*err4) 
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Question 5   

How does the picture you drew in Question 4 compare to the comparable picture you 
constructed in Assignment 4?  

New error bar plot, displaying 95% Wald confidence 
intervals for the mean 

Old error bar plot from Assignment 4  
 

 
The means of both plots are the same, and the error bars are about the same length as before.  These 
differences in error bar length could be due to differences in the functions used to generate values for the 
standard errors.  In Assignment 4 we used the nlm function and the out$hessian from the model output to 
compute the standard errors.  This time, we used a negative binomial GLM and the covariance matrix 
from its summary output to compute the standard errors.   


