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Question 1   

Fit a logistic regression model that uses all the variables as main effects, i.e., you need not 
consider the possibility of variable interactions at this point. Think long and hard about the 
variables color and spine before you blindly include them in the model. 

• Be sure to justify the structural form you chose for the weight variable.  

crabs<-
read.table(‘http://www.unc.edu/courses/2006spring/ecol/145/001/data/midterm/c
rabs.txt', header=TRUE, sep='') 
 
The binary response variable Y for presences and absences 
Y<-ifelse(crabs$num.satellites==0, Y<-0, Y<-1)  
 
table(crabs$color) 
 2  3  4  5  
12 95 44 22  
table(crabs$spine) 
  1   2   3  
 37  15 121 
 
color.f<-factor(crabs$color) 
spine.f<-factor(crabs$spine) 
 
contrasts(color.f) 
  3 4 5 
2 0 0 0 
3 1 0 0 
4 0 1 0 
5 0 0 1 

contrasts(spine.f) 
  2 3 
1 0 0 
2 1 0 
3 0 1 

 
Color and spine are categorical variables, unlike width and weight.  Thus, they must be converted to 
factors before being incorporated into later models.   
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The structural form of the width regressor is linear because I found in Assignment 8 that the plot of the 
logit of the presence/absence of satellite males vs. width was linear.  As for the correct form for the weight 
regressor, I first decided to do a plot of the logit of the presence/absence of the satellite males vs. the 
weight, and fit a lowess curve to see if that could tell me anything about whether the weight should be 
inputted as a linear or quadratic term.  However, because the lowess curve fit is very sensitive to the 
number of groups I create (deciles vs. octiles, for example), I later decided to use the rcspline.plot 
function. 
 
library(Design)  
rcspline.plot(y=Y,x=crabs$weight,nk=5,m=20) 
 

 
 
The curve goes upward in a fairly linear manner, which suggests that weight should be inputted into our 
model as a linear term. 
 
Also, fitting a model with and without a quadratic weight term, I found that the model with a linear term 
had a lower AIC than the one that had a quadratic term.  This is another bit of information that suggests 
the weight should be included as a linear term. 
 
# the full model including weight as a linear term 
fullmodel<-glm(Y~width+weight+color.f+spine.f, data=crabs, family=binomial)  
AIC(fullmodel)  
[1] 201.202 
 
#the full model including weight as a quadratic term 
fullmodel2<-glm(Y~width+weight+I(weight^2)+color.f+spine.f, data=crabs, 
family=binomial)  
AIC(fullmodel2) 
[1] 203.1600 

• Based on the summary output for this "full" model, what do you conclude about the 
effects of the various variables on the presence/absence of satellite males? 

summary(fullmodel) 
Coefficients: 
              Estimate Std. Error z value Pr(>|z|)   
(Intercept) -8.6151215  3.8442046  -2.241   0.0250 * 
width        0.2631279  0.1952986   1.347   0.1779   
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weight       0.0008258  0.0007038   1.173   0.2407   
color.f1    -0.0514512  0.3912956  -0.131   0.8954   
color.f2    -0.1458043  0.1838350  -0.793   0.4277   
color.f3    -0.3528526  0.1471485  -2.398   0.0165 * 
spine.f2    -0.0959809  0.7033698  -0.136   0.8915   
spine.f3     0.4002868  0.5027043   0.796   0.4259   
 
None of the variable estimates have significant p-values except for one, color.f3, though its p-value isn’t 
much smaller than 0.05.  Thus, this is the only variable that appears to have any effect on the 
presence/absence of satellite males.   

Question 2   

In light of your analysis in Assignment 8 is there anything troubling about your answer to 
Question 1? What do you think may be going on?  

In Assignment 8 I fit a model that only had width as a predictor, and found that width was a significant 
predictor.  The Wald test in that summary output gave p-values that were orders of magnitude under 0.05 
(and thus significant) than what the model in Question 1 gave for the intercept and width.  It appears that 
including the extra variables of weight, color, and spine is making the model worse instead of better at 
predicting the presence/absence of satellite males. 

Question 3   

Refit the model of Question 1 but this time without the weight variable. Examine the output 
from the summary function and answer question 1 again for this new model. What's changed? 
Explain why this change has occurred.  

model3<-glm(Y~width+color.f+spine.f, data=crabs, family=binomial)  
summary(model3) 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -11.09953    2.97706  -3.728 0.000193 *** 
width         0.45624    0.10779   4.233 2.31e-05 *** 
color.f3     -0.14340    0.77838  -0.184 0.853830     
color.f4     -0.52405    0.84685  -0.619 0.536030     
color.f5     -1.66833    0.93285  -1.788 0.073706 .   
spine.f2     -0.05782    0.70308  -0.082 0.934453     
spine.f3      0.37703    0.50191   0.751 0.452540     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
    Null deviance: 225.76  on 172  degrees of freedom 
Residual deviance: 186.61  on 166  degrees of freedom 
AIC: 200.61 
 
The AIC has decreased slightly (from 201.17 to 200.61), but a bigger difference is that the p-values for 
both the intercept and the width have become much smaller (and significant) than they were in the model 
that included weight as a predictor.  This tells me that weight should be thrown out of the model, and that 
the width is a significant predictor of the presence/absence of satellite males.   
 
This model had only width as a predictor, while the model in Question 1 had both width and weight as 
predictors.  These two variables are likely correlated because wider crabs will likely weigh more (unless 
they shrink in length when they become wider—knowing something about what the crabs look like would 
help).  Without knowing what the crabs look like, I can at least check for a correlation.  Sometimes models 
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having two or more highly correlated variables have a poorer fit to the data than models where those 
correlations are eliminated, as we saw in the last lab for the meanmin and meanmax variables. 
 
cor(crabs$width,crabs$weight) 
[1] 0.8868715 
 
This is a rather high value (close to 1), so these variables are in fact very correlated.  This result suggests 
we should remove one of the two variables from our model.   
 

Question 4   

In light of your answer to Question 3, we will no longer include weight among the set of 
predictors. Using the remaining three variables find a best main effects logistic regression model 
for these data. Be sure to justify the steps you go through in declaring this model to be best. 

I used stepAIC to try different combinations of the remaining three predictors and compare them to find 
the best model.  I set the upper bound model to be the one that considers all possible interactions 
between width, color.f, and spine.f by using the asterisk notation.  The lower bound model is the model 
without any predictors (just an intercept). 

The stepAIC function created models using all possible combinations of predictors and their interactions, 
and found that the model without spine had the lowest AIC.   

model3<-glm(Y~width+color.f+spine.f, data=crabs, family=binomial)  
 
library(MASS)  
 
stepAIC(model3, scope=list(upper=~width*color.f*spine.f,lower=~1)) 
Start:  AIC= 200.61  
 Y ~ width + color.f + spine.f  
 
                  Df Deviance    AIC 
- spine.f          2   187.46 197.46 
<none>                 186.61 200.61 
+ width:color.f    3   181.64 201.64 
- color.f          3   194.43 202.43 
+ color.f:spine.f  6   177.60 203.60 
+ width:spine.f    2   186.41 204.41 
- width            1   208.83 220.83 
 
Step:  AIC= 197.46  
 Y ~ width + color.f  
 
                Df Deviance    AIC 
<none>               187.46 197.46 
- color.f        3   194.45 198.45 
+ width:color.f  3   183.08 199.08 
+ spine.f        2   186.61 200.61 
- width          1   212.06 220.06 
 
Call:  glm(formula = Y ~ width + color.f, family = binomial, data = crabs)  
 
Coefficients: 
(Intercept)        width     color.f3     color.f4     color.f5   
  -11.38519      0.46796      0.07242     -0.22380     -1.32992   
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Degrees of Freedom: 172 Total (i.e. Null);  168 Residual 
Null Deviance:      225.8  
Residual Deviance: 187.5        AIC: 197.5 
 

Question 5   

Now consider a model that includes interactions among the three variables. You have my 
blessing at this point to use an automated variable selection routine if you wish. What model do 
you come up with? Interpret the parameter estimates of all the predictors that occur in your final 
model. 

The stepAIC output above already considered all possible two-variable interactions among the three 
variables, due to what I entered as the upper bound model.  It concluded that the best model (with the 
lowest AIC) was Y~width+color.f, which did not account for any interactions.    
 
model4<-glm(Y~width+color.f, data=crabs, family=binomial)  
summary(model4) 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -11.38519    2.87346  -3.962 7.43e-05 *** 
width         0.46796    0.10554   4.434 9.26e-06 *** 
color.f3      0.07242    0.73989   0.098    0.922     
color.f4     -0.22380    0.77708  -0.288    0.773     
color.f5     -1.32992    0.85252  -1.560    0.119     
    Null deviance: 225.76  on 172  degrees of freedom 
Residual deviance: 187.46  on 168  degrees of freedom 
AIC: 197.46 
 
Interpretation of parameter estimates: 
 
Our model is in the form of Y = α0 + β0 + β1x1 + β2x2 + β3x3, where α0 = the width, and β0 through β3 are 
the 4 color types (colors 2-5).  The coefficients above were estimated for the model on the logit scale.  
Exponentiating them gives their values on the probability scale:   
 
exp(coef(model4)[2:5]) 
    width  color.f3  color.f4  color.f5  
1.5967271 1.0751035 0.7994769 0.2644987 
 
The width coefficient estimate α0 is an odds ratio that measures the effect of increasing the width by 1 on 
the odds that Y (the presence/absence) = 1.  Since α0 = 1.5967271, this means for every increase in 
width of that amount there is a unit increase in the odds that the female will have at least one satellite 
male. The three color estimates, after exponentiating, are estimates of β1, β2, and β3, as described in the 
equations below.  These exponentiated estimates give us the effect, for each of the different colors of 
female crabs, of increasing the width by 1 on the presence/absence of satellite males. 
 
contrasts(color.f) 
  3 4 5 
2 0 0 0 
3 1 0 0 
4 0 1 0 
5 0 0 1 

 
color 2: logit(p) = β0 + α0*width 
color 3: logit(p) = (β0+β1) + α0*width 
color 4: logit(p) = (β0+β2) + α0*width 
color 5: logit(p) = (β0+β3) + α0*width 
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Question 6  

If you compare the model you obtained in Question 5 against various nested simpler models 
using appropriate significance tests, which model would you conclude is best?  

I’ll use the LR test outputted in the results of ANOVA model comparisons, comparing the model from 
Question 5 with models of Y~width, Y~color.f, and Y~1. 

model4<-glm(Y~width+color.f, data=crabs, family=binomial) #from Question 5 
model5<-glm(Y~width, data=crabs, family=binomial)  
model6<-glm(Y~color.f, data=crabs, family=binomial)  
model7<-glm(Y~1, data=crabs, family=binomial)  
 
anova(model4,model5,test='Chisq') 
Model 1: Y ~ width + color.f 
Model 2: Y ~ width 
  Resid. Df Resid. Dev  Df Deviance P(>|Chi|) 
1       168    187.457                        
2       171    194.453  -3   -6.996     0.072 
 
The p-value is just above 0.05—it’s not small enough to suggest that color.f should be counted as a 
significant predictor, but it’s close. 
 
anova(model4,model6,test='Chisq') 
Model 1: Y ~ width + color.f 
Model 2: Y ~ color.f 
  Resid. Df Resid. Dev  Df Deviance P(>|Chi|) 
1       168    187.457                        
2       169    212.061  -1  -24.604 7.041e-07 
 
The p-value here is small, so width is a significant predictor and should be included in the model.  Thus, 
model4 is still the best model. 
 
anova(model4,model7,test='Chisq') 
Model 1: Y ~ width + color.f 
Model 2: Y ~ 1 
  Resid. Df Resid. Dev  Df Deviance P(>|Chi|) 
1       168    187.457                        
2       172    225.759  -4  -38.301  9.71e-08 
 
The results of this comparison support those from the one above, that having either of the two predictors 
is better than having none.  Thus, model4 remains the best model of all of these. 
 

Question 7   

Graph your final model from Question 5 on a probability scale.  

Plotting the presence-absence data and model results on the probability scale 
 
color 2: logit(p) = β0 + α0*width 
color 3: logit(p) = (β0+β1) + α0*width 
color 4: logit(p) = (β0+β2) + α0*width 
color 5: logit(p) = (β0+β3) + α0*width 
 

p(color 2) = 1/(1+e-(β0 + α0*width) ) 

p(color 3) = 1/(1+e-((β0+ β1) + α0*width) ) 
p(color 4) = 1/(1+e-((β0+ β2) + α0*width) ) 
p(color 5) = 1/(1+e-((β0+ β3) + α0*width) ) 
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The three color estimates after exponentiating are estimates of β1, β2, and β3; α0 is the width coefficient 
estimate. 
 
exp(coef(model4)[2:5]) 
    width  color.f3  color.f4  color.f5  
1.5967271 1.0751035 0.7994769 0.2644987 
  α0  β1            β2      β3 
 
plotting the points 
plot(Y~crabs$width,xlab='Width',ylab='Probability of Presence/Absence') 
 
highlighting the points in different colors 
points(crabs$width[color.f==2], Y[color.f==2], col=1) 
points(crabs$width[color.f==3], Y[color.f==3], col=2) 
points(crabs$width[color.f==4], Y[color.f==4], col=3) 
points(crabs$width[color.f==5], Y[color.f==5], col=4) 
 
lines for colors 2, 3, 4, and 5 
lines(seq(0,173,1), 1/(1+exp(-coef(model4)[1]-coef(model4)[2]*seq(0,173,1))), 
col=1) 
lines(seq(0,173,1), 1/(1+exp(-sum(coef(model4)[1],coef(model4)[3]) -
coef(model4)[2]*seq(0,173,1))), col=2) 
lines(seq(0,173,1), 1/(1+exp(-sum(coef(model4)[1],coef(model4)[4]) -
coef(model4)[2]*seq(0,173,1))), col=3) 
lines(seq(0,173,1), 1/(1+exp(-sum(coef(model4)[1],coef(model4)[5]) -
coef(model4)[2]*seq(0,173,1))), col=4) 
 
mtext(“Presence/Absence of Males vs. Female Width, By Color”, side=3, 
line=.5) 
 
legend(28,.4, c('Color 2', 'Color 3', 'Color 4', ‘Color 5’), col=c(1,2,3,4), 
lwd=c(1,1,1,1), lty=c(1,1,1,1), cex=c(.8,.8,.8,.8), bty='n') 
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Question 8   

Using an appropriate goodness of fit test, test the fit of your final model.  

I used Harrell’s alternative to the Hosmer-Lemeshow test, which was one of the three goodness-of-fit 
tests we did in the last assignment: 
 
library(Design) 
out.harrell<-lrm(Y~width+color.f,data=crabs,x=TRUE,y=TRUE) 
residuals.lrm(out.harrell,type='gof') 
Sum of squared errors     Expected value|H0                    SD  
           31.6457412            31.5393772             0.3184185  
                    Z                     P  
            0.3340382             0.7383507 
 
This test gives a p-value of 0.7383507, which is high above 0.05 and thus is significant in indicating the 
model has a good fit to the data.   

Question 9   

In this question we explore model calibration using the model obtained in Question 5.  
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1. What value of c should you use if your goal is to maximize both the specificity and 
sensitivity of your decision rule?  

library(ROCR) 
pred<-prediction(fitted(model4),Y) 
testy<-performance(pred,'tpr','tnr') 
plot(testy@alpha.values[[1]],testy@x.values[[1]],type='n') 
lines(testy@alpha.values[[1]],testy@y.values[[1]],col=2) #the red line 
lines(testy@alpha.values[[1]],testy@x.values[[1]],col=4) #the blue line 
 

 
It appears that the value of c that would maximize both the sensitivity and the specificity is roughly 0.65. 
 
To get a more exact value for c, we can look where testy@y.values[[1]] equals testy@x.values[[1]], which 
is where their difference equals 0. 
testy@y.values[[1]]-testy@x.values[[1]] 
Looking at the output, the 58th element of this vector is closest to zero.  
testy@alpha.values[[1]][58] 
[1] 0.6395257 
 
The value of c we would want is 0.64, which is very close to my visual estimate. 

2. Obtain the value of AUC, area under the curve, for your logistic regression model. Interpret 
the number you obtain. 

lrm(Y~width+color.f,data=crabs) 
Logistic Regression Model 
lrm(formula = Y ~ width + color.f, data = crabs) 
Frequencies of Responses 
  0   1  
 62 111  
       Obs  Max Deriv Model L.R.       d.f.          P          C        Dxy  
       173      4e-05       38.3          4          0      0.771      0.543  
     Gamma      Tau-a         R2      Brier  
     0.546      0.251      0.272      0.183  
 
          Coef      S.E.   Wald Z P      
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Intercept -11.38519 2.8735 -3.96  0.0001 
width       0.46796 0.1055  4.43  0.0000 
color.f=3   0.07242 0.7399  0.10  0.9220 
color.f=4  -0.22380 0.7771 -0.29  0.7733 
color.f=5  -1.32992 0.8525 -1.56  0.1188 
 
The AUC is given by C in the lrm output, which is 0.771.  According to the scale given to us in class, a 
value of AUC between 0.7-0.8 is fair.  The closer the AUC is to 1, the better the model is in discriminating 
presences of satellite males from absences, which are a concordant pair of 1s (presences) and 0s 
(absences).  The AUC (also called the concordance index) also represents the fraction of the time that 
the model yields correct predictions of presences and absences in a pairwise comparison.  

3. Carry out a 10-fold cross-validation and report the AUC you would expect to obtain with 
new data.  

crabs$Y<-Y 
crabs$color.f<-color.f 
library(boot) 
cost<-function(r, pi=0) mean(abs(r-pi)>0.5) 
out<-cv.glm(crabs,model4,cost,K=10) 
names(out) 
[1] "call"  "K"     "delta" "seed" 
out$delta 
        1         1  
0.2890173 0.2792275 
 
Either one of the above represents the fraction of the time that we will get inaccurate predictions from the 
model, given new data.  I will use the second number because it is a bias-corrected version of the first 
number.  Subtracting it from 1 gives the AUC: 
 
1-out$delta[2] 
        1  
0.7207725 
 
The 10-fold cross-validation thus gives a slightly lower AUC than the method in #2 above, which gave a 
value for the AUC of 0.771. 

4. Plot the ROC curve for your logistic regression model.  

library(Epi)  
ROC(form=Y~crabs$width+color.f,plot="ROC") 
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5. Do a second ROC plot but this time include both the ROC curve for the final model obtained 
in Question 5 and the ROC curve for the final model obtained in Assignment 8. Use different 
colors for the two curves. What can you conclude from this plot?  

The Assignment 8 final model was inputted as model5 back in Question 6:  
model5<-glm(Y~width, data=crabs, family=binomial)  
 
ROC(form=Y~crabs$width+color.f,plot="ROC") #plots model from Question 5 
par(new=TRUE) 
library(ROCR) 
pred<-prediction(fitted(model5), Y) 
perf<-performance(pred,"tpr","fpr") 
plot(perf, xlab=’’, ylab=’’, axes=FALSE, col=2) #plots the Assignment 8 graph 
par(new=FALSE) 
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Just visually inspecting the areas beneath the two curves in the above graph, the curve for the final model 
in Question 5 (black) has more area beneath it than the curve for the Assignment 8 model (red).  The only 
difference between the two models is the inclusion of the color.f categorical variable as a predictor.  Thus, 
including this variable gives a model with a higher AUC than one without it, which means that this model 
does a better job more of the time in correctly predicting presences and absences of satellite males. 

Question 10   

Since the variable color represents shades of darkness, it might be treated as an ordinal variable. 
What evidence do you have from your logistic regression results to suggest that perhaps the log 
odds of a satellite male being present has an ordinal relationship to the variable color? 

The three color estimates, after exponentiating, are estimates of β1, β2, and β3.  These adjust the 
intercepts for each of the 4 colors of crabs according to the equations below, and thus affect the log odds 
of a satellite male being present.  From the logistic regression results below, we see that except for the 
first case, color.f3, the coefficients for color.f3, f4, and f5 become increasingly negative.  This suggests 
that darker crabs are less likely to have a satellite male present, maybe because darker crabs are less 
visible. 
 
color 2: logit(p) = β0 + α0*width 
color 3: logit(p) = (β0+β1) + α0*width 

color 4: logit(p) = (β0+β2) + α0*width 
color 5: logit(p) = (β0+β3) + α0*width 

 
model4<-glm(Y~width+color.f, data=crabs, family=binomial)  
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summary(model4) 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -11.38519    2.87346  -3.962 7.43e-05 *** 
width         0.46796    0.10554   4.434 9.26e-06 *** 
color.f3      0.07242    0.73989   0.098    0.922     
color.f4     -0.22380    0.77708  -0.288    0.773     
color.f5     -1.32992    0.85252  -1.560    0.119     
 

Question 11   

Fit a logistic regression model using width and ordinal color as predictors. Is there any evidence 
for linear, quadratic, or cubic trends? 

color.o<-ordered(crabs$color) 
model8<-glm(Y~width+color.o, data=crabs, family=binomial) 
summary(model8) 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -11.75552    2.74185  -4.287 1.81e-05 *** 
width         0.46796    0.10554   4.434 9.26e-06 *** 
color.o.L    -0.95837    0.58032  -1.651   0.0986 .   
color.o.Q    -0.58927    0.47472  -1.241   0.2145     
color.o.C    -0.09867    0.33738  -0.292   0.7699     
    Null deviance: 225.76  on 172  degrees of freedom 
Residual deviance: 187.46  on 168  degrees of freedom 
AIC: 197.46 
 
The significance tests done on the linear, quadratic, and cubic components of the color ordinal variable 
come back with all non-significant p-values.  Thus we can conclude there is no evidence for any trends if 
the spacing between the color categories is constrained to being equal. 

Question 12   

A second way of handling ordinal data is to use Helmert contrasts. Based on the output from the 
summary function, what can you conclude about color and its effect on the presence/absence of 
satellite males this time? Interpret the color results as best you can.  

contrasts(color.f)<-'contr.helmert' 
contrasts(color.f) 
  [,1] [,2] [,3] 
2   -1   -1   -1 
3    1   -1   -1 
4    0    2   -1 
5    0    0    3 

 
color 2: logit(p) = β0-β1-β2-β3+α0*width 
color 3: logit(p) = β0+β1-β2-β3+α0*width 
color 4: logit(p) = β0+2β2-β3+α0*width 
color 5: logit(p) = β0+3β3+α0*width 

 
model9<-glm(Y~width+color.f, data=crabs, family=binomial) 
summary(model9) 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept) -11.75552    2.74185  -4.287 1.81e-05 *** 
width         0.46796    0.10554   4.434 9.26e-06 *** 
color.f1      0.03621    0.36995   0.098    0.922     
color.f2     -0.08667    0.16742  -0.518    0.605     
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color.f3     -0.31986    0.13966  -2.290    0.022 *   
    Null deviance: 225.76  on 172  degrees of freedom 
Residual deviance: 187.46  on 168  degrees of freedom 
AIC: 197.46 
 
The three color results are the log of β1, β2, and β3, respectively.  The coefficient for color.f3, which is 
log(β3), is the only significant estimate due to its p-value of 0.022 (below 0.05).  Due to the use of the 
Helmert contrast coding, the significance test for color.f3 tests whether color 5 has a significantly different 
effect on the presence/absence than colors 2, 3, and 4 averaged together.  Being of color 5 would have a 
significantly different effect if color.f3 is significantly different from zero, which is the case, as indicated by 
the low p-value.  This allows me to conclude that female crabs of color 5 (dark) have a significant effect 
on the presence/absence of satellite males than females of other color categories.    
 

Question 13   

Based on what you observed in Question 12 dichotomize color into two groups. Fit a logistic 
regression model that includes width and dichotomized color as predictors. How does this model 
compare to your model of Question 5? 

For this question, I want to separate the 4 color categories into two.  The first category will be colors 2, 3, 
and 4, and the second category will be color 5. 
 
color.ld<-factor(ifelse(crabs$color<5, color.ld<-1, color.ld<-2)) 
color.ld 
  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 2 1 1 2 1 1 1 1 1 
 [35] 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 
 [69] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 
[103] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 
[137] 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 
[171] 1 2 1 
Levels: 1 2 
 
model0<-glm(Y~width+color.ld, data=crabs, family=binomial) 
summary(model0) 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -11.6790     2.6925  -4.338 1.44e-05 *** 
width         0.4782     0.1041   4.592 4.39e-06 *** 
color.ld2    -1.3005     0.5259  -2.473   0.0134 *   
    Null deviance: 225.76  on 172  degrees of freedom 
Residual deviance: 187.96  on 170  degrees of freedom 
AIC: 193.96 
 
The AIC of this model is about 4 units lower than that from Question 5 (which was 197.46).  Also, the 
three color coefficients estimated for that model were not significant, but this coefficient has a significant 
p-value (below 0.05).  Both of these suggest that this model than the Question 5 model.  
 
 


